Total number of printed pages-7

3 (Sem-1/CBCS) PHY HC 1

2022 PHYSICS

(Honours)

Paper: PHY-HC-1016

(Mathematical Physics-I)

Full Marks: 60

Time: Three hours

The figures in the margin indicate full marks for the questions.

- Answer any seven of the following questions:
 - (a) Define unit vectors.
 - (b) If $\vec{A}.\vec{B} = 0$, then what is the angle between \vec{A} and \vec{B} ?
 - (c) What is a 'DEL' operator?
 - (d) Find the Laplacian of the scalar field $\phi = xy^2z^3$

Contd.

- (e) State Green's theorem.
- (f) Write the order and degree of the differential equation

$$2y\left(\frac{d^2y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^4 = 0$$

- (g) What do you understand by the statement $\nabla \cdot \vec{A} = 0$?
- (h) What is an 'error' in statistics?
- (i) Define coordinate surfaces in curvilinear co-ordinates.
- (j) Write the integrating factor of the differential equation

$$\frac{dy}{dx} + 5y = x^2$$

- (k) Write the geometrical interpretation of the scalar triple product.
- (1) Define variance in statistics.
- 2. Answer **any four** of the following questions: $2\times4=8$
 - (a) Give examples of a scalar field and a vector field.

- (b) If \vec{r} represents the position vector, then find the value of $\vec{\nabla} \cdot \vec{r}$.
- (c) Define the line integral of a vector.
- (d) Write down the relation of cylindrical co-ordinate (r,θ,z) with cartesian co-ordinate (x,y,z).
- (e) Explain the scale factors h_1, h_2, h_3 in curvilinear co-ordinate system.
- (f) For what value of N, the vectors $\vec{A} = 2\hat{i} + 3\hat{j} 6\hat{k}$ and $\vec{B} = N\hat{i} + 2\hat{j} + 2\hat{k}$ are perpendicular to each other.
- (g) Evaluate $\iint_{S} \vec{r} \cdot \hat{n} ds$, where S is a closed surface.
- (h) Prove that $\delta(x) = \delta(-x)$.
- 3. Answer **any three** of the following questions: 5×3=15
 - (a) Show that

$$\frac{d}{dt}(\vec{A} \times \vec{B}) = \frac{d\vec{A}}{dt} \times \vec{B} + \vec{A} \times \frac{d\vec{B}}{dt}$$

- (b) If $\phi = xy + yz + zx$ and $\vec{F} = \vec{\nabla} \phi$, then find $\vec{\nabla} \cdot \vec{F}$ and $\vec{\nabla} \times \vec{F}$.
- (c) Apply Green's theorem in the plane to evaluate the integral

$$\oint_C [(xy - x^2)dx + x^2y \, dy]$$
over the triangle bounded by the lines $y = 0$, $x = 1$ and $y = x$.

- (d) Solve the differential equation $2xy\frac{dy}{dx} = x^2 + 3y^2$
- (e) Express $\nabla^2 \psi$ in cylindrical coordinate system.
- (f) Prove that $\delta(x^2 a^2) = \frac{1}{2a} [\delta(x a) + \delta(x + a)]$
- (g) A function is defined as

$$f(x) = \begin{cases} 0 & \text{for } x < 2 \\ \frac{1}{18} (2x+3) & \text{for } 2 \le x \le 4 \\ 0 & \text{for } x > 2 \end{cases}$$

Show that it is a probability density function.

- (h) If \vec{F} is a vector, prove that $\vec{\nabla} \times (\vec{\nabla} \times \vec{F}) = \vec{\nabla} (\vec{\nabla} \cdot \vec{F}) \nabla^2 \vec{F}$
- 4. Answer **any three** of the following questions: 10×3=30
 - (a) (i) Show that the gradient of a scalar field is a vector.
 - (ii) Show that

 $2\frac{1}{2} \times 2 = 5$

- 1. $\operatorname{div} \operatorname{curl} \vec{A} = 0$ and
- 2. $curl(grad \phi) = 0$
- (b) (i) Define curvilinear co-ordinate system. When it is called orthogonal? 3+1=4
 - (ii) Obtain expression for length, area and volume elements in curvilinear coordinate system. 2+2+2=6
- (c) (i) State and explain Gauss-divergence theorem. 3
 - (ii) Give the physical meaning of divergence and curl of a vector.

 2+2=4
 - (iii) Find an expression of $\nabla \cdot \vec{A}$ in spherical polar co-ordinate system.

3

- (d) (i) Find the directional derivative of $\phi(x,y,z) = xy^2 + yz^3$ at the point (2,-1,1) in the direction of vector $\hat{i} + 2\hat{j} + 2\hat{k}$.
 - (ii) Prove that $\nabla^2 \left(\frac{1}{r}\right) = 0$. 5
- (e) Solve the following differential equations: 5+5=10

(i)
$$(1+x^2)\frac{dy}{dx} + 2xy = \cos x$$

(ii)
$$\frac{d^2y}{dx^2} - 5\frac{dy}{dx} + 6y = e^{4x}$$

- State and prove Stoke's theorem. Using Stoke's theorem show that $\oint \vec{r} \times d\vec{r} = 2 \iint_S d\vec{S}, \text{ where } C \text{ is the closed}$ perimeter curve bounding the open surface S. 1+5+4=10
- (g) (i) Solve $\frac{d^2y}{dx^2} 3\frac{dy}{dx} + 2y = 0$, subject to the condition y(0) = 0, y'(0) = 1

(ii) Prove that
$$\vec{A}.(\vec{B} \times \vec{C}) = (\vec{A} \times \vec{B}).\vec{C}$$
 4

(h) (i) If
$$\vec{A} = 6\hat{i} + 4\hat{j} + 3\hat{k}$$

 $\vec{B} = 2\hat{i} - 3\hat{j} - 3\hat{k}$
 $\vec{C} = \hat{i} + \hat{j} + \hat{k}$ then evaluate
 $\vec{A} \times (\vec{B} \times \vec{C})$ 4

(ii) Evaluate $\oint_C x^2 y dx + y^2 dy$, where C is the boundary of the region enclosed by y = x and $y^2 = x$.