Total number of printed pages-8 3 (Sem-3/CBCS) PHY HC 1 # 2022 PHYSICS (Honours) Paper: PHY-HC-3016 ### (Mathematical Physics-II) Full Marks: 60 Time: Three hours The figures in the margin indicate full marks for the questions. - 1. Answer **any seven** of the following questions: 1×7=7 - (a) Define the singular point of a second order linear differential equation. - (b) If $P_n(x)$ and $Q_n(x)$ are two independent solutions of Legendre equation, then write the general solution of the Legendre equation. - (c) Give one example where Hermite polynomial is used in physics. Contd. - (d) The function $P_n(1)$ is given as - (i) zero - (ii) -1 - (iii) $P_n(-1)$ - (iv) 1 (Choose the correct option) - (e) Define trace of a matrix. - (f) What is the rank of a zero matrix? - (g) Define self-adjoint matrix. - (h) What do you mean by eigenvector? - (i) Which one of the following represents an equation of a vibrating string? (i) $$\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$$ (ii) $$\frac{\partial y}{\partial t} = c \frac{\partial y}{\partial x}$$ - (iii) None of the above (Choose the correct option) - (j) Write the Laplace equation spherical polar co-ordinate system. - (k) Define gamma function. - (1) State the Dirichlet condition for Fourier series. 2 - Answer any four of the following questions: 2×4=8 - (a) Check whether Frobenius method can be applied or not to the following equation: $$2x^{2}\frac{d^{2}y}{dx^{2}} - x\frac{dy}{dx} + (x-5)y = 0$$ - (b) If $\int_{-1}^{+1} P_n(x) dx = 2$, find the value of n. - (c) If A and B are Hermitian matrices, show that AB + BA is Hermitian whereas AB BA is skew-Hermitian. - (d) Verify that $(AB)^T = B^T A^T$, where $$A = \begin{bmatrix} 1 & 2 & 3 \\ 3 & -2 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 2 \\ 2 & 0 \\ -1 & 1 \end{bmatrix}$$ (e) Given matrices $$\sigma_1 = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ \sigma_2 = \begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}, \ \sigma_3 = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix},$$ show that $\sigma_1 \sigma_2 - \sigma_2 \sigma_1 = 2i\sigma_3$. (f) Using the property of gamma function evaluate the integral $$\int_{0}^{\infty} x^4 e^{-x} \, dx$$ (g) Write the degree and order of the following partial differential equations: (i) $$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} = 0$$ (ii) $$\left(\frac{\partial u}{\partial x}\right)^3 + \frac{\partial u}{\partial t} = 0$$ - (h) Find the value of a_0 of the Fourier series for the function $f(x) = x \cos x$ in the interval $-\pi < x < \pi$. - 3. Answer **any three** of the following questions: 5×3=15 - (a) (i) Why is the function $(1-2xh+h^2)^{-\frac{1}{2}}$ known as a generating function of Legendre polynomial? - (ii) Show that $$(1-2xh+h^2)^{-\frac{1}{2}} = \sum_{n=0}^{\infty} P_n(x)h^n$$ 4 where $P_n(x)$ is the Legendre polynomial. (b) Evaluate explicitly the Legendre's polynomials $P_2(x)$ and $P_3(x)$. 21/2+21/2=5 (c) Write the recursion formula for gamma function. Prove that $$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi} = 1.772$$ (d) What is diagonalize matrix? Diagonalize the following matrix: 1+4=5 $$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$ (e) Express the matrix: $$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & -1 & -2 \\ 4 & 2 & 0 \end{bmatrix}$$ as a sum of symmetric and skew-symmetric matrix. What is adjoint of a matrix? For the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & -5 \end{bmatrix}$ verify the theorem $$A \cdot (AdjA) = (AdjA) \cdot A = |A| \cdot I$$ where *I* is unit matrix. 5 (g) If the solution y(x) of Hermite's differential equation is written as $$y(x) = \sum_{r=0}^{\infty} a_r x^{k+r}$$, show that the allowed values of k are zero and one only. - (h) Find the Fourier series representing f(x) = x, $0 < x < 2\pi$ - 4. Answer **any three** of the following questions: $10 \times 3 = 30$ - (a) (i) Verify that the matrix $$A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$$ is orthogonal. 2 (ii) Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and also find A^{-1} . 5+3=8 (b) Obtain the power series solution of the Legendre equation $$(1-x^2)\frac{d^2y}{dx^2} - 2x\frac{dy}{dx} + n(n+1)y = 0$$ (c) (i) Obtain the following orthogonality property of Legendre polynomial: $$\int_{-1}^{+1} P_n(x) P_m(x) dx = 0 \text{ for } m \neq n$$ 6 - (ii) Show that $H_0(x) = 1$ and $H_1(x) = 2x$ 2+2=4 - (d) Prove the following recurrence relations: 4+3+3=10 (i) $$nP_n = (2n-1)xP_{n-1} - (n-1)P_{n-2}$$ (ii) $$x P'_n - P'_{n-1} = n P_n$$ (iii) $$2x H_n(x) = 2n H_{n-1}(x) + H_{n+1}(x)$$ - (e) What is periodic function? Express the periodic functions in a series of sine and cosine functions. What are Fourier coefficients? Determine the Fourier coefficients. 1+1+1+7=10 - (f) (i) Using the method of separation of variables, solve: 7 $$\frac{\partial u}{\partial x} = 2\frac{\partial u}{\partial t} + u$$, where $u(x,0) = 6e^{-3x}$ Find the eigenvalues of the matrix (ii) $$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$ (i) If $H_n(x)$ be the polynomial of (g) Hermite differential equation, prove that $$\int_{-\infty}^{+\infty} e^{-x^2} H_n^2(x) \, dx = 2^n \sqrt{\pi \cdot n!}$$ 7 Prove that the following matrix is (ii) unitary: $$\begin{bmatrix} \frac{1}{2}(1+i) & \frac{1}{2}(-1+i) \\ \frac{1}{2}(1+i) & \frac{1}{2}(1-i) \end{bmatrix}$$ 3 Deduce the one dimensional wave (h) equation of transversely vibrating string under tension T. Solve the equation by the method of separation of variables. 7+3=10 $$7+3=10$$