3 (Sem-1) PHY M 1 (O)

2019

PHYSICS

(Major)

Paper: 1.1

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

GROUP-A

(Mathematical Method)

(Marks : 20)

- 1. (a) Define scalar field and vector field in a region R in space.
 - (b) If φ(r) is a scalar field, state whether the two expressions below are scalar or vector:

(i) $\nabla^2 \phi(r)$

let (ii) $\nabla^2 \left[\vec{\nabla} \phi(r) \right]$ a to stead the set of t

1

- (a) Prove that if the scalar triple product of three vectors vanishes, then the vectors are coplanar.
 (b) If A and B are irrotational, then prove that A×B is solenoidal.
 (c) What is the physical significance of grade A?
 (d) Some scalar field is given by φ(r) = r² = x² + y² + z²
 Show that ∇r is a unit vector.
- 3. Answer any two questions:

5×2=10

- (a) Show that the unit vector perpendicular to each of the vectors $\vec{A} = 3\hat{i} + \hat{j} + 2\hat{k}$ and $\vec{B} = 2\hat{i} 2\hat{j} + 4\hat{k}$ is $\frac{1}{\sqrt{3}}(\hat{i} \hat{j} \hat{k})$ and that the sine of the angle between them is $\frac{2}{\sqrt{7}}$.
- (b) Find $\vec{\nabla} \cdot \vec{F}$ and $\vec{\nabla} \times \vec{F}$, where $\vec{F} = \vec{\nabla}(x^3 + y^3 + z^3 3xyz)$
- (c) Show that the curl of the linear velocity \vec{v} of a particle of a rigid body is equal to twice the angular velocity $\vec{\omega}$.

(Continued)

GROUP—B

(Mechanics)

(Marks: 40)

4.	(a)	What is the difference between laboratory frame of reference and centre of mass frame of reference?	1
	(b)	What is an equipotential surface? Can we have equipotential surface for gravitational field of unit mass?	1
	(c)	What is the rotational analogue of the mass of a body? Is it a vector quantity?	1
• ?	(d)	Newton's laws of motion are not valid in non-inertial frame of reference. Explain why.	1
	(e)	Name the fictitious forces obtained in the rotating frame of reference.	1
	(f)	Name the force which is required to keep the satellite in the orbits. Is it a conservative force?	1
5.	(a)	A particle of mass m_1 moving with a velocity u_1 is elastically scattered from another particle of mass m_2 at rest. After collision two particles move in	
		opposite directions with same speed. Find the relation between the two masses.	

(b) Distinguish between inertial mass and gravitational mass. Are gravitational mass and inertial mass of a body identical?

2

6. Answer any two questions:

5×2=10

- (a) Show that when the vector sum of external forces acting upon a system equals zero, the total linear momentum of the system is conserved.
- (b) Show that the force

$$\vec{F} = (y^2 - 2xyz^3)\hat{i} + (3 + 2xy - x^2z^3)\hat{j} + (6z^3 - 3x^2yz^2)\hat{k}$$

is a conservative force.

- (c) Explain how the acceleration due to gravity is determined by Kater's pendulum in the laboratory.
- 7. Answer any two questions:

 $10 \times 2 = 20$

(a) Establish work energy theorem. Show that for conservative force field, the sum of potential energy and kinetic energy of a particle remains the same. 5+5=10

(Continued)

(b) Deduce expressions for the gravitational potential and attraction due to a thin uniform spherical shell at a general point outside as well as inside the shell. Give a graphical representation also.

4+4+2=10

- (c) What are moment of inertia and radius of gyration of a rotating body? Is moment of inertia a vector or a scalar quantity? What is the physical significance of moment of inertia? State and prove the theorem of perpendicular axis of moment of inertia. 2+1+2+5=10
- (d) Show mathematically that the Coriolis force and centrifugal force are produced as a result of motion of the particles in the rotating coordinate system.
 Discuss how the gravitational acceleration is affected when a particle of mass is placed at any point on the earth surface.
 7+3=10

* * *