3 (Sem-1) PHY M 2 (O)

2019

PHYSICS

(Major)

Paper: 1.2

Full Marks: 60

Time: 3 hours

The figures in the margin indicate full marks for the questions

SECTION-I

(Waves and Oscillations)

(Marks: 40)

1.	. (a)	What is the phase relationship between particles lying between two consecutive nodes?	1
	(b)	A particle vibrates in simple harmonic motion. Where will it have maximum acceleration?	1
	(c)	What two factors determine wave speed along a stretched string?	1
	(d)	What is Sabine's formula for reverberation time?	1

20A/392

(Turn Over)

(a)

(b)

particle.

The equation of motion of a particle

is $x = 2\sin\left(\frac{\pi t}{2} + \frac{\pi}{4}\right)$ cm. Find the period

and the maximum velocity of the

Define the intensity and energy density

at a point in a plane wave of sound.

2

2

(Continued)

	(c)	What is the intensity level in decibels of a sound wave whose intensity is 10^{-10} watt/cm ² ? Take the reference intensity as 10^{-16} watt/cm ² .
		200
3.	Ans	wer any <i>two</i> questions: 5×2=10
	(a)	Establish the differential equation of a simple harmonic oscillator and solve it. 2+3=5
	(b)	Solve the three-dimensional wave equations in rectangular Cartesian co-ordinates using method of separation of variables.
	63	The property of the contract of
	(c)	Deduce the expression for the energy of
	14.7	a string vibrating transversely.

Answer any two questions:

10×2=20

- Derive and solve the differential equation of a forced harmonic oscillator. Obtain resonance condition.
 3+5+2=10
- 5. State Fourier's theorem regarding expansion of a periodic function. What are its limitations? How are Fourier coefficients evaluated? 2+2+6=10
- 6. What is stationary wave? Distinguish a stationary wave from a progressive wave. Explain mathematically how a stationary wave is formed due to superposition of two waves. Show that the distance between two consecutive nodes is $\frac{\lambda}{2}$. 2+2+4+2=10
 - 7. Derive an expression for velocity of longitudinal waves produced in a thin solid bar. Find the fundamental frequency of a bar clamped at two points each one-fourth of its length away from the ends, the rod being excited longitudinally.

 7+3=10

the and herety classical particular

SECTION—II

(Ray Optics)

(Marks : 20)

Answer any four questions:

5×4=20

8. State Fermat's principle of extremum path and use it to deduce Snell's law of refraction.

1+4=5

- 9. What is the advantage of using matrix method in paraxial optics? What is system matrix? Obtain the matrix for a thin lens placed in air and made of refractive index 1.5 and radii of curvature 50 cm each. 1+1+3=5
- 10. Deduce the expression for lateral magnification of image produced by a convex lens.
- 11. What are aplanatic points? Find the aplanatic foci for a spherical refracting surface.
 1+4=5
- Obtain the conditions for achromatism with two thin lenses when they are in contact.

* * *