Total number of printed pages-15

1 (Sem-1) MAT

2024

MATHEMATICS

Paper: MAT0100104

(Classical Algebra)

Full Marks: 60

Time: 2½ hours

The figures in the margin indicate full marks for the questions.

Answer either in English or in Assamese.

- Answer the following questions: 1×8=8
 তলত দিয়া প্ৰশ্নবোৰৰ উত্তৰ দিয়া ঃ
 - (a) Which of the following statements is false for the complex number —i?
 জটিল সংখ্যা —iৰ বাবে তলৰ কোনটো উক্তি অশুদ্ধ?
 - $-\frac{\pi}{2}$ is the principal argument $-\frac{\pi}{2}$ হৈছে প্ৰধান প্ৰসাৰণ

- (ii) $\frac{3\pi}{2}$ is an argument, but not the principal argument $\frac{3\pi}{2}$ এটা প্ৰসাৰণ, কিন্তু প্ৰধান প্ৰসাৰণ নহয়
- (iii) Both (i) and (ii) are true (i) আৰু (ii) দুয়োটা সত্য
- (iv) (i) is true, but (ii) is false (i) সঁচা, কিন্তু (ii) মিছা
- (b) Is it true that $(cosn\theta isinn\theta)$ is the only value of $(cos\theta isin\theta)^n$ when n is a fraction and θ is a real number? n এটা ভগ্নাংশ আৰু θ এটা বাস্তৱ সংখ্যা হ'লে $(cosn\theta isinn\theta)$ হৈছে $(cos\theta isin\theta)^n$ ৰ একমাত্র মান। উক্তিটো সঁচা নেকি?
- (c) For any complex number z, $sin h^2 z cos h^2 z =$ _____.

 থিকোনো জটিল সংখ্যা zৰ বাবে $sin h^2 z cos h^2 z =$ _____।

BIKALI COLLEGE LIBRARY

- (d) The equation $x^4 + 5x^2 + 2x 8 = 0$ has $x^4 + 5x^2 + 2x 8 = 0$ সমীকৰণটোৰ আছে
 - (i) four real roots চাৰিটা বাস্তৱ মূল
 - (ii) four complex roots চাৰিটা জটিল মূল
 - (iii) two real roots and two complex roots
 দুটা বাস্তৱ মূল আৰু দুটা জটিল মূল
 - (iv) only one root x = 1মাত্র এটা মূল x = 1
- (e) If a, b and c are roots of $x^3 + px^2 + qx + r = 0$, the value of $a^2 + b^2 + c^2$ is ______.

 যদি a, b আৰু c, $x^3 + px^2 + qx + r = 0$ ৰ মূল হয়, তেন্তে $a^2 + b^2 + c^2$ ৰ মান হ'ব _____।
- (f) Which of the following is a correct statement?
 তলৰ কোনটো উক্তি শুদ্ধ?
 - (i) An algebraic equation must have either a positive or a negative real root.

বীজগণিতীয় সমীকৰণ এটাৰ ধনাত্মক বা ঋণাত্মক, বাস্তৱ মূল থাকিব লাগিব।

- (ii) An algebraic equation may not have a complex root.
 বীজগণিতীয় সমীকৰণ এটাৰ জটিল মূল নাথাকিবও পাৰে।
- (iii) An algebraic equation of degree 2 must have 2 distinct roots real or complex.
 - 2 ডিগ্ৰীৰ বীজগণিতীয় সমীকৰণ এটাৰ 2টা সুকীয়া মূল বাস্তৱ বা জটিল হ'ব লাগিব।
- (iv) All the above statements are false. ওপৰৰ সকলোবোৰ উক্তি অশুদ্ধ।
- (g) Is the statement "For three non-zero matrices A, B and C, it is possible that AB = AC, but B≠C." True or False? "তিনিটা অশ্ন্য মৌলকক A, B আৰু C ৰ বাবে সম্ভৱ যে AB = AC কিন্তু B≠C" উক্তিটো সঁচা নে মিছা?
- (h) Assume that A is an $m \times n$ matrix. If one column in A is entirely zero, what is rank (A)?

BIKALI COLLEGE LIBRARY

ধৰা হ'ল A এটা $m \times n$ মৌলকক্ষ। যদি A ৰ এটা স্তম্ভ সম্পূৰ্ণ শূন্য হয়, তেন্তে জাতি (A) ৰ মান কি?

- Answer any six questions : 2×6=12
 যিকোনো ছটা প্ৰশ্নৰ উত্তৰ দিয়া ঃ
 - (a) Express -1 i in polar form.
 -1 i ক ধ্ৰুৱীয় ৰূপত প্ৰকাশ কৰা।
 - (b) Solve : $x = 1^{\frac{1}{4}}$ সমাধান কৰা ঃ $x = 1^{\frac{1}{4}}$
 - (c) Prove that $(\exp z)^n = \exp(nz)$, for any complex number z and positive integer n.

প্ৰমাণ কৰা যে $(\exp z)^n = \exp(nz)$, যিকোনো জটিল সংখ্যা z আৰু ধনাত্মক পূৰ্ণসংখ্যা n ৰ বাবে।

(d) If 1-i is a root of $x^4 + x^2 - 2x + 6 = 0$, find the other roots of it.

যদি 1-i, $x^4+x^2-2x+6=0$ ৰ এটা মূল হয়, তেন্তে ইয়াৰ আন মূলবোৰ উলিওৱা।

- (e) Show that each value of 2 Logi is a value of Logi², but not conversely.

 দেখুওৱা যে 2 Logiৰ প্ৰতিটো মান Logi² ৰ এটা মান, কিন্তু ইয়াৰ বিপৰীতে নহয়।
- (f) Discuss briefly the nature of the roots of the equation $x^{10} + 1 = 0$ by applying Descartes' rule of signs.

 ডেকার্টৰ চিহ্নৰ নিয়ম প্রয়োগ কৰি $x^{10} + 1 = 0$ সমীকৰণটোৰ মূলৰ প্রকৃতিৰ বিষয়ে চমুকৈ ব্যাখ্যা কৰা।
- (g) If $\alpha_1, \alpha_2, ..., \alpha_n$ are the roots of the equation

$$y_n + t_1 y_1^{n-1} + t_2 y_1^{n-2} + ... + t_n = 0, t_n \neq 0,$$

find the value of $\sum_{i=1}^{n} \frac{1}{\alpha_i^2}$ using a suitable 'transformation of equation' approach.

যদি α_1 , α_2 , ..., α_n , সমীকৰণ

$$y_n + t_1 y^{n-1} + t_2 y^{n-2} + ... + t_n = 0, t_n \neq 0$$
ৰ মূল হয়, তেন্তে এটা উপযুক্ত 'সমীকৰণৰ ৰূপান্তৰ' পদ্ধতি

ব্যৱহাৰ কৰি $\sum_{i=1}^n \frac{1}{\alpha^2}$ ৰ মান উলিওৱা।

(h) Find out all the 3 × 3 matrices which are both symmetric and skewsymmetric.

সকলো 3 × 3 মৌলকক্ষ বিচাৰি উলিওৱা যিবোৰ প্ৰতিসম আৰু তিৰ্যক প্ৰতিসম দুয়োটা হয়।

(i) Show that $(A^{-1})^T = (A^T)^{-1}$ holds for a non-singular matrix A.

দেখুওৱা যে $\left(A^{-1}\right)^T = \left(A^T\right)^{-1}$ পৰাবৰ্তনীয় $(\text{non-singular}) \ \text{মৌলকক্ষ } A \text{ বাবে প্ৰযোজ্য } \text{!}$

(j) Define a homogeneous system of linear equation. Is such a system always consistent? Justify your answer very briefly.

ৰৈখিক সমীকৰণৰ সমজাতীয় প্ৰণালীৰ সংজ্ঞা দিয়া। এনে প্ৰণালী সদায় সামঞ্জস্যপূৰ্ণ (consistent) নেকি? অতি চমুকৈ উত্তৰটোৰ ন্যায্যতা প্ৰতিপন্ন কৰা। 3. Answer **any two** of (a), (b), (c) and (d), and **either** (e) **or** (f) and **either** (g) **or** (h): $5\times4=20$

উত্তৰ দিয়া (a), (b), (c) আৰু (d) ৰ *যিকোনো দুটা*, (e) অথবা (f) আৰু (g) অথবা (h) :

(a) Let z_1 and z_2 be two non-zero complex numbers. If θ_1 is an argument of z_1 and θ_2 is an argument of z_2 , show that

 $\theta_1 - \theta_2$ is an argument of $\frac{z_1}{z_2}$. Does

$$arg\left(\frac{z_1}{z_2}\right) = arg z_1 - arg z_2$$
 hold in

general? Justify your answer.

ধৰা হ'ল z_1 আৰু z_2 দুটা অশূন্য জটিল সংখ্যা। যদি θ_1 , z_1 ৰ এটা প্ৰসাৰ আৰু θ_2 , z_2 ৰ এটা প্ৰসাৰ হয়,

তেন্তে
$$heta_1- heta_2$$
, $rac{z_1}{z_2}$ ৰ প্ৰসাৰ বুলি দেখুওৱা।

$$arg\left(\frac{z_1}{z_2}\right) = arg z_1 - arg z_2$$
 সদায় প্রযোজ্য হয়

নেকি? উত্তৰটোৰ ন্যায্যতা দিয়া।

(b) Find all complex numbers z such that $exp(z+\bar{z}) = 3+4i$.

সকলো জটিল সংখ্যা z উলিওৱা যাতে $exp(z+\bar{z})=3+4i$ হয়।

- (c) Let z be a non-zero complex number and n be a positive integer. Show that $Log z^{\frac{1}{n}} = \frac{1}{n} Log z$ holds. Also, verify it for z = -i and n = 2.

 ধৰা হ'ল z এটা অশূন্য জটিল সংখ্যা আৰু n এটা ধনাত্মক পূৰ্ণসংখ্যা। দেখুওৱা যে $Log z^{\frac{1}{n}} = \frac{1}{n} Log z$ । লগতে z = -i আৰু n = 2ৰ বাবে ইয়াক সত্যাপন কৰা।
- (d) If z = x + iy, prove that $|\sin hy| \le |\sin z| \le \cos hy$. যদি z = x + iy, তেন্তে প্ৰমাণ কৰা যে $|\sin hy| \le |\sin z| \le \cos hy$ ।

- (e) Prove that the imaginary roots of a polynomial equation with real coefficients occur always in pairs.
 - বাস্তৱ সহগ থকা বহুপদ সমীকৰণৰ কাল্পনিক মূলবোৰ সদায় যোৰকৈ থাকে বুলি প্ৰমাণ কৰা।
 - (f) Determine t and solve the equation $16x^3 24x^2 2tx + 6 = 0$ if the roots are in arithmetic progression.
 - tৰ মান নিৰ্ণয় কৰা আৰু $16x^3 24x^2 2tx + 6 = 0$ সমীকৰণটো সমাধান কৰা যদি মূলবোৰ সমান্তৰ প্ৰগতিত থাকে।
 - (g) Is it possible to find a non-zero matrix A that is upper triangular and $\lim_{n\to\infty} A^n = 0$? Explain your answer appropriately.

অশূন্য মৌলকক্ষ A এটা বিচাৰি পোৱা সম্ভৱনে যিটো ওপৰৰ ত্ৰিভূজীয় আৰু $\lim_{n\to\infty}A^n=0$? উত্তৰটো উপযুক্তভাৱে ব্যাখ্যা কৰা।

(h) Reduce the following matrix to row echelon form, determine its rank and identify the basic columns.

নিম্নলিখিত মৌলকক্ষটোক শাৰী ইচেলন আকৃতিলৈ নিয়া, ইয়াৰ জাতি নিৰ্ধাৰণ কৰা আৰু মূল স্তম্ভসমূহ চিনাক্ত কৰা।

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
2 & 4 & 6 & 9 \\
2 & 6 & 7 & 6
\end{pmatrix}$$

4. Answer either (a) or (b) and any one of (c), (d) and (e): $10 \times 2 = 20$

উত্তৰ দিয়া (a) অথবা (b) আৰু (c), (d) আৰু (e)ৰ যিকোনো এটা ঃ

(a) (i) If n is an integer, prove that যদি n এটা পূৰ্ণসংখ্যা হয়, প্ৰমাণ কৰা যে

$$(1+i)^{n} + (1-i)^{n} = 2^{\frac{n}{2}+1} \cos \frac{n\pi}{4}$$
 3

(ii) If the product of two roots of the equation $x^4 + ax^3 + bx^2 + cx + d = 0$ is unity, show that

$$(c-a)(ad-c)=(1-d)^2(b-d-1).$$

7

যদি $x^4 + ax^3 + bx^2 + cx + d = 0$ সমীকৰণটোৰ দুটা মূলৰ গুণফল একক হয়, তেন্তে দেখুওৱা যে

$$(c-a)(ad-c) = (1-d)^{2}(b-d-1)$$

(b) (i) Prove that প্ৰমাণ কৰা যে

$$\sin^4\theta\cos^2\theta = \frac{1}{32}(\cos6\theta - 2\cos4\theta - \cos2\theta + 2)$$

3

(ii) Solve by Euler's method : অইলাৰৰ পদ্ধতিৰে সমাধান কৰা ঃ $x^4 - 2x^2 + 8x - 3 = 0$

- (c) For an n×n matrix A, prove that the following statements are equivalent:
 n×n মৌলকক্ষ A ৰ বাবে তলত দিয়া বিবৃতিবোৰ সমতুল্য বুলি প্রমাণ কৰা ঃ
 - *(i). A*⁻¹ exists *A*⁻¹ৰ অস্তিত্ব আছে
 - (ii) rank(A) = nজাতি (A) = n
 - (iii) Ax = 0 implies that x = 0Ax = 0 ৰ অৰ্থ হ'ল x = 0
- (d) (i) If A_1 , A_2 ,... A_k are each $n \times n$ non-singular matrices, prove that the product A_1A_2 ,... A_k is also non-singular and

$$(A_1 A_2,...A_k)^{-1} = A_k^{-1}...A_2^{-1}A_1^{-1}.$$
 5

যদি A_1 , A_2 ,... A_k ৰ প্ৰতিটো $n \times n$ পৰাবৰ্তনীয় (non-singular) মৌলকক্ষ হয়, তেন্তে প্ৰমাণ কৰা যে গুণফল A_1A_2 ,... A_k টোও পৰাবৰ্তনীয় (non-singular) আৰু

$$(A_1 A_2, ... A_k)^{-1} = A_k^{-1} ... A_2^{-1} A_1^{-1}$$

(ii) Determine the reduced row echelon form of the following matrix and express each non-basic column as a combination of basic columns:

নিম্নলিখিত মৌলকক্ষটোৰ হ্ৰাস শাৰীৰ ইচেলন (reduced row echelon) আকৃতি নিৰ্ধাৰণ কৰা আৰু প্ৰতিটো অমৌলিক স্তম্ভক মৌলিক স্তম্ভৰ দ্বাৰা প্ৰকাশ কৰা ঃ

$$\begin{pmatrix}
1 & 2 & 3 & 3 \\
2 & 4 & 6 & 9 \\
2 & 6 & 7 & 6
\end{pmatrix}$$

(e) (i) Explain the general solution of the following system:

তলত দিয়া প্ৰণালীটোৰ সাধাৰণ সমাধানৰ বিষয়ে ব্যাখ্যা কৰা ঃ

$$2x_1 + x_2 + x_3 = 0,$$

$$4x_1 + 2x_2 + x_3 = 0,$$

$$6x_1 + 3x_2 + x_3 = 0,$$

$$8x_1 + 5x_2 + x_3 = 0.$$

(ii) Construct a homogeneous system of three equations in four unknowns with appropriate justification that has as its general solution the following:

চাৰিটা অজ্ঞাত যুক্ত তিনিটা সমীকৰণৰ এটা সমজাতীয় প্ৰণালী উপযুক্ত যুক্তিৰ সৈতে বনোৱা যাৰ সাধাৰণ সমাধান হিচাপে থাকিব

$$x_{2} \begin{pmatrix} -2 \\ 1 \\ 0 \\ 0 \end{pmatrix} + x_{4} \begin{pmatrix} -3 \\ 0 \\ 2 \\ 1 \end{pmatrix}.$$